Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(28): e2301478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37590389

RESUMO

The receptor-binding domain (RBD) of spike recognizing the receptor angiotensin-converting enzyme 2 (ACE2) initiates membrane fusion between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cell membrane. Although the structure of the RBD_ACE2 complex has been well studied, its functional mechanism in membrane fusion is still not fully understood. Here, using an in vitro cell-vesicle content-mixing assay, it is found that the cleavage at the S2' site by thrombin (Thr) protease strongly accelerates membrane fusion, compared to that of cleavage at the S1/S2 site by PreScission (3C) protease. Moreover, mutations at the RBD_ACE2 interface resulted in a positive correlation between binding affinity and fusion probability. In both the cell-vesicle and cell-cell fusion assays, by crosslinking two membranes via the neutravidin (NTV)_biotin interaction or complementary DNA strands, it is found that spike drives membrane fusion in the absence of ACE2, and a suitable distance between two membranes is critical for spike-mediated membrane fusion. Finally, unsuitable membrane crosslinkers significantly inhibited the fusion probability in the presence of ACE2. Taken together, the results suggest that the RBD_ACE2 complex may act as a crosslinker to bridge the viral and cell membranes at a suitable distance, which is critical, but also substitutable for spike-mediated SARS-CoV-2 entry.

2.
J Med Chem ; 65(17): 11679-11702, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35982539

RESUMO

A novel series of hybrid molecules combining pyrrolobenzodiazepine (PBD) and anthracenecarboxyimide pharmacophores were designed, synthesized, and tested for in vitro cytotoxicity against various cancer cell lines. The most potent compound from this series, 37b3, exhibited a subnanomolar level of cytotoxicity with an IC50 of 0.17-0.94 nM. 37b3 induced DNA damage and led to tumor cell cycle arrest and apoptosis. We employed 37b3 as a payload to conjugate with trastuzumab to obtain the antibody-drug conjugate (ADC) T-PBA. T-PBA maintained its mode of target and internalization ability of trastuzumab. We demonstrated that T-PBA could be degraded through the lysosomal pathway to release the payload 37b3 after internalization. T-PBA showed a powerful killing effect on Her2-positive cancer cells in vitro. Furthermore, T-PBA significantly inhibited tumor growth in gastric and ovarian cancer xenograft mouse models without overt toxicity. Collectively, these studies suggest that T-PBA represents a promising new ADC that deserves further investigation.


Assuntos
Imunoconjugados , Animais , Benzodiazepinas , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Pirróis/farmacologia , Receptor ErbB-2/genética , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1724-1737, 2022 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-35611725

RESUMO

The cultivation and production of cucumber are seriously affected by downy mildew caused by Pseudoperonospora cubensis. Downy mildew damages leaves, stems and inflorescences, and then reduces the yield and quality of cucumber. This review summarized the research advances in cucumber downy mildew, including pathogen detection and defense pathways, regulatory factors, mining of pathogens-resistant candidate genes, proteomic and genomic analysis, and development of QTL remarks. This review may facilitate clarifying the resistance mechanisms of cucumber to downy mildew.


Assuntos
Cucumis sativus , Oomicetos , Peronospora , Cucumis sativus/genética , Oomicetos/genética , Doenças das Plantas/genética , Proteômica
4.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 2991-3004, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34622612

RESUMO

Flowering is a critical transitional stage during plant growth and development, and is closely related to seed production and crop yield. The flowering transition is regulated by complex genetic networks, whereas many flowering-related genes generate multiple transcripts through alternative splicing to regulate flowering time. This paper summarizes the molecular mechanisms of alternative splicing in regulating plant flowering from several perspectives, future research directions are also envisioned.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Processamento Alternativo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética
5.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2645-2657, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472285

RESUMO

Lysine acetylation is one of the major post-translational modifications and plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from the lysines of both histone and non-histone proteins. The RPD3 family is the most widely studied HDACs. This article summarizes the regulatory mechanisms of Arabidopsis RPD3 family in several growth and development processes, which provide a reference for studying the mechanisms of RPD3 family members in regulating plant development. Moreover, this review may provide ideas and clues for exploring the functions of other members of HDACs family.


Assuntos
Arabidopsis , Desenvolvimento Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas , Desenvolvimento Vegetal/genética
6.
Front Cell Dev Biol ; 9: 689727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307367

RESUMO

Immune checkpoint inhibitors have achieved unprecedented success in cancer immunotherapy. However, the overall response rate to immune checkpoint inhibitor therapy for many cancers is only between 20 and 40%, and even less for colorectal cancer (CRC) patients. Thus, there is an urgent need to develop an efficient immunotherapeutic strategy for CRC. Here, we developed a novel CRC combination therapy consisting of a multiple receptor tyrosine kinase inhibitor (Foretinib) and anti-PD-1 antibody. The combination therapy significantly inhibited tumor growth in mice, led to improved tumor regression without relapse (83% for CT26 tumors and 50% for MC38 tumors) and prolonged overall survival. Mechanistically, Foretinib caused increased levels of PD-L1 via activating the JAK2-STAT1 pathway, which could improve the effectiveness of the immune checkpoint inhibitor. Moreover, the combination therapy remodeled the tumor microenvironment and enhanced anti-tumor immunity by further increasing the infiltration and improving the function of T cells, decreasing the percentage of tumor-associated macrophages (TAMs) and inhibiting their polarization toward the M2 phenotype. Furthermore, the combination therapy inhibited the metastasis of CT26-Luc tumors to the lung in BALB/c mouse by reducing proportions of regulatory T-cells, TAMs and M2 phenotype TAMs in their lungs. This study suggests that a novel combination therapy utilizing both Foretinib and anti-PD-1 antibody could be an effective combination strategy for CRC immunotherapy.

7.
Front Microbiol ; 11: 555351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117304

RESUMO

Actinomycetes in extreme alpine habitat have attracted much attention due to their unique physiological activities and functions. However, little is known about their ecological distribution and diversity. Here, we explored the phylogenetic relationship and physiological heterogeneity of cultivable actinomycetes from near-root soils of different plant communities in the Laohu Ditch (2200 - 4200 m) and Gaize County area (5018 - 5130 m) on the Qinghai-Tibetan Plateau. A total of 128 actinomycete isolates were obtained, 16S rDNA-sequenced and examined for antimicrobial activities and organic acid, H2S, diffusible pigments, various extracellular enzymes production. Seventy three isolates of the total seventy eight isolates from the Laohu Ditch, frequently isolated from 2200 to 4200 m, were closely related to Streptomyces spp. according to the 16S rDNA sequencing, while four isolates within the genus Nocardia spp. were found at 2200, 2800, and 3800 m. In addition, one potential novel isolate with 92% sequence similarity to its nearest match Micromonospora saelicesensis from the GenBank database, was obtained at 2200 m. From the Gaize County area, fifty Streptomyces isolates varied in diversity at different sites from 5018 to 5130 m. The investigation of phenotypic properties of 128 isolates showed that 94.5, 78.9, 68, 64.8, 53, 51.6, 50, 36.7, 31.2, and 22.7% of the total isolates produced catalase, lipase 2, urease, protease, H2S, lipase 3, amylase, lipase 1, diffusible pigment and organic acid, respectively. The antimicrobial assays of the total isolates revealed that 5, 28, 19, and 2 isolates from Streptomyces spp. exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa, respectively. This study intends to bring helpful insights in the exploitation and utilization of alpine actinomycetes for novel bioactive compounds discovery.

8.
Eur J Med Chem ; 199: 112364, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402935

RESUMO

Cryptophycin-52 (CR52), a tubulin inhibitor, exhibits promising antitumor activity in vitro (picomolar level) and in mouse xenograft models. However, the narrow therapeutic window in clinical trials limits its further development. Antibody-drug conjugate (ADC), formed by coupling cytotoxic compound (payload) to an antibody via a linker, can deliver drug to tumor locations in a targeted manner by antibody, enhancing the therapeutic effects and reducing toxic and side effects. In this study, we aim to explore the possibility of CR52-based ADC for tumor targeted therapy. Due to the lack of a coupling site in CR52, its prodrug cryptophycin-55 (CR55) containing a free hydroxyl was synthesized and conjugated to the model antibody trastuzumab (anti-HER2 antibody drug approved by FDA for breast cancer therapy) via the linkers based on Mc-NHS and Mc-Val-Cit-PAB-PNP. The average drug-to-antibody ratios (DARs) of trastuzumab-CR55 conjugates (named T-L1-CR55, T-L2-CR55, and T-L3-CR55) were 3.50, 3.29, and 3.35, respectively. These conjugates exhibited potent cytotoxicity in HER2-positive tumor cell lines with IC50 values at low nanomolar levels (0.58-1.19 nM). Further, they displayed significant antitumor activities at the doses of 10 mg/kg in established ovarian cancer (SKOV3) and gastric cancer (NCI-N87) xenograft models without overt toxicities. Finally, the drug releases were analyzed and the results indicated that T-L3-CR55 was able to effectively release CR55 and further epoxidized to CR52, which may be responsible for its best performance in antitumor activities. In conclusion, our results demonstrated that these conjugates have the potential for tumor targeted therapy, which provides insights to further research the CR55/CR52-based ADC for tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Depsipeptídeos/farmacologia , Imunoconjugados/farmacologia , Lactamas/farmacologia , Lactonas/farmacologia , Trastuzumab/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imunoconjugados/química , Lactamas/química , Lactonas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Trastuzumab/química , Células Tumorais Cultivadas
9.
MedComm (2020) ; 1(3): 338-350, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766126

RESUMO

Ovarian cancer is considered to be the most lethal gynecologic malignancy, and despite the development of conventional therapies and new therapeutic approaches, the patient's survival time remains short because of tumor recurrence and metastasis. Therefore, effective methods to control tumor progression are urgently needed. The oncofetal tumor-associated antigen 5T4 (trophoblast glycoprotein, TPBG) represents an appealing target for adoptive T-cell immunotherapy as it is highly expressed on the surface of various tumor cells, has very limited expression in normal tissues, and spreads widely in malignant tumors throughout their development. In this study, we generated second-generation human chimeric antigen receptor (CAR) T cells with redirected specificity to 5T4 (5T4 CAR-T) and demonstrated that these CAR-T cells can elicit lytic cytotoxicity in targeted tumor cells, in addition to the secretion of cytotoxic cytokines, including IFN-γ, IL-2, and GM-CSF. Furthermore, adoptive transfer of 5T4 CAR-T cells significantly delayed tumor formation in xenografts of peritoneal and subcutaneous animal models. These results demonstrate the potential efficacy and feasibility of 5T4 CAR-T cell immunotherapy and provide a theoretical basis for the clinical study of future immunotherapies targeting 5T4 for ovarian cancer.

10.
J Hazard Mater ; 380: 120885, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377673

RESUMO

Tetracycline is an antibiotic that frequently contaminates the environment. In this study, the growth and metabolites of ryegrass seedlings treated with tetracycline (0, 1, 10 or 100 mg/L) for 5 days were investigated. The results showed that the growth of ryegrass and the concentrations of carotenoid and chlorophyll decreased as the tetracycline concentration increased. Tetracycline increased the production of reactive oxygen species (ROS) and cell permeability and triggered mitochondrial membrane potential loss in the roots of ryegrass. The metabolic profiles of ryegrass differed between the control and tetracycline-treated groups. The contents of glucose, shikimic acid, aconitic acid, serine, lactose, phenylalanine, mannitol, galactose, gluconic acid, asparagine, and glucopyranose were positively correlated with root length and had high variable importance projection values. These compounds may have crucial functions in root extension. Tetracycline also affected aminoacyl-tRNA biosynthesis, nitrogen metabolism, and alanine, aspartate and glutamate metabolism in the roots. Tetracycline may affect root extension by regulating the synthesis/degradation of these metabolites or the activity of their biosynthetic pathways. These results provide an insight into the stress response of ryegrass to tetracycline.


Assuntos
Lolium/efeitos dos fármacos , Estresse Oxidativo , Tetraciclina/farmacologia , Antioxidantes/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Oncol ; 13(9): 1855-1873, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116512

RESUMO

DDR1 has been identified as a cancer-associated receptor tyrosine kinase that is highly expressed in several malignancies relative to normal tissues. Clinically approved multi-kinase inhibitors, such as nilotinib, inhibit DDR1-mediated tumor growth in xenograft models, suggesting DDR1 might be a potential target for cancer treatments. Here, we employed an antibody-based strategy with a novel anti-DDR1 antibody-drug conjugate (ADC) for colon carcinoma treatment. We developed T4 H11 -DM4, an ADC targeting DDR1 which carries the tubulin inhibitor payload DM4. Immunohistochemical analysis of a tissue microarray containing 100 colon cancer specimens revealed that DDR1 was highly expressed in 81% of tumor tissues. Meanwhile, high expression of DDR1 was associated with poor survival in patients. In vitro, T4 H11 -DM4 exhibited potent anti-proliferative activity with half maximal inhibitory concentration (IC50 ) values in the nanomolar range in a panel of colon cancer cell lines. In vivo, the antitumor efficacy of T4 H11 -DM4 was evaluated in three colon cancer cell lines expressing different levels of DDR1. T4 H11 -DM4 achieved complete tumor regression at doses of 5 and 10 mg·kg-1 in HT-29 and HCT116 tumor models. Moreover, a correlation between in vivo efficacy of T4 H11 -DM4 and the levels of DDR1 expression on the cell surface was observed. Tumor cell proliferation was caused by the induction of mitotic arrest, indicating that the antitumor effect in vivo was mediated by DM4. In addition, T4 H11 -DM4 was efficacious in oxaliplatin-resistant colon cancer models. In exploratory safety studies, T4 H11 -DM4 exhibited no overt toxicities when multi-doses were administered at 10 mg·kg-1 into BALB/c nude mice or when a single dose up to 50 mg·kg-1 was administered into BALB/c mice. Overall, our findings highlight the potential of DDR1-targeted ADC and may facilitate the development of a new effective therapeutic strategy for colon cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Imunoconjugados/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Animais , Células CACO-2 , Receptor com Domínio Discoidina 1/metabolismo , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...